About a possibility of reducing losses of energy at switching off of high-voltage IGBT devices and its circuitry energy efficiency

Authors

  • Н. В. Панасенко Journal Railway Transport of Ukraine, I. Fedorova Str., 39, Kyiv, 03038, tel.: 067-989-06-51, Ukraine https://orcid.org/0000-0002-6567-2065
  • Д. Ю. Шаповалов Dnepropetrovsk National University of Railway Transport named after academician Lazaryana, str. Lazaryana, 2, Dnepropetrovsk, Ukraine, 49010, tel.: 096-103-04-97, Ukraine https://orcid.org/0000-0002-7024-628X
  • А. А. Краснов Design and Research Institute of Railway Transport of PJSC "Ukrzaliznytsia", Kharkov Department, Chervonoarmiyska Str., 7, Kharkiv, 61052, tel.: 066-330-83-46, Ukraine https://orcid.org/0000-0002-7538-8965

DOI:

https://doi.org/10.15802/etr.v0i11.83704

Keywords:

IGBT device, switching off, schematic, energy efficiency

Abstract

Article is devoted researching of a problem of switching losses in IGBT modules. It is shown that the main obstacles in a way of further increasing in frequency of switchings of IGBT are the considerable size of "tail current" and dynamic losses of inclusion and switching off. The possibility of decrease in size of "tail current" and dynamic losses of switching off due to profiling of structure of the semiconductor device by proton radiation is proved. Proton radiation of IGBT allows to create big concentration of holes near a collector, leaving other structure of a crystal without changes. At the same time losses of switching off decrease twice. Further decrease in dynamic losses becomes possible thanks to introduction to the power scheme of a four-quadrant IGBT key of the switching (snubber) transistor. The presented structure allows to unload the main power transistors and to reduce thereby dynamic losses of switching off. The preliminary estimate shows that thermal load of such module decreases by 25% in comparison with standard IGBT. Such devices can be used on the diesel- and electric trains of new generation.

Author Biography

Д. Ю. Шаповалов, Dnepropetrovsk National University of Railway Transport named after academician Lazaryana, str. Lazaryana, 2, Dnepropetrovsk, Ukraine, 49010, tel.: 096-103-04-97

Department of electric rolling stock of railways

References

Laska B.. Razvitie tyagovyh preobrazovateley na tranzistorah IGBT: predposylki i faktory uspeha techniki na baze IGBT [Development of traction converters on IGBT transistors: prerequisites and success factors for technology-based IGBT]. Zheleznye dorogi mira – World railways, 2003, no. 11, pp. 32-39.

Hvorost N. V. Ekspluatatsionnye kharakteristiki upravlyaemyh poluprovodnikovyh priborov tyagovyh preobrazovateley elektropodvizhnogo sostava [Operational characteristics of the managed semiconductor devices of traction converters of electric rolling]. Informatsionno-upravlyayuschie sistemy na zheleznodorozhnom transporte Information management systems for railway transport, 2003, no. 2, pp. 31-36.

Goncharov Yu. P. Peretvoriuvalna tehnIka. PIdruchnik Ch.2.[ Converter equipment]. Kharkiv. Folio Publ., 2000. 360 p.

Yoji Di et. IEGT Power Converters for the Shinkansen Traction Systems./T.IEE Japan, vol. 121-D, №3, 2001.– p 356-362.

Voronin P. A. Silovye poluprovodnikovye klyuchi: semeystva, kharakteristiki, primenenie.[Power semiconductor keys: families, characteristics, application. Prod. 2]. Moscow. Dodeka-XXI Publ., 2005. 384 p.

Catt J., Chokhawala R., Pelly B. Primenenie 600-voltnyh moduley BTIZ v korpusah ADP-F-PAK i INT-PAK.[ Application the 600-V BTIZ modules in cases ADP-F-PAK and INT-PAK]. Silovye poluprovodnikovye pribory Power semiconductor devices. Voronezh. 1995. pp. 509-544.

Bonomorskiy O., Voronin P., Kulakov V., Schepkin N. Issledovanie protsessov zapiraniya kombinirovannyh tranzistorov [Research of the processes of locking combined transistors]. Silovaya elektronika – Power electronics. 2004, no. 2, pp. 27-30.

Lorenz L., Schulze G. Moscow. Impulsnye parametry novyh bystryh IGBT. [Impulse factors of the new fast IGBT]. Silovye IGBT-moduli: materialy po primeneniiu – Power IGBT modules: materials on application. Moskow. Dodeka Publ., 1997. pp. 55-60.

Eupec. Technishe Information. Available at: http://eu.mouser.com/ProductDetail/Infineon-Technolo gies/FZ600R65KF1/?qs=Phipx4kG5Fw6K831yQiKZA%3D%3D

Bliher A. Fizika silovyh bipolyarnyh i polevyh tranzistorov [Physics of power bipolar and field transistors]. Leningrad. Energoatomizdat Publ., 1986, 248 p.

Labuntsov V. A. Obuhov S. G., Sviridov A. F. Tiristory (Tekhnicheskiy spravochnik) [Thyristor (Technical reference book)]. Moscow. Energiya Publ., 1971, 560 p.

Panasenko M. V., Panasenko N. V., Khvorost V. Yu. Energosberigaiuchi sylnostrumovi vysokovoltni kliuchi i fazni moduli na yih osnovi [Energy-saving high-current high-voltage keys and the phase modules based on them]. Elektronika i elektromekhanika – Electronics and elektromechaniks. 2007, no. 5, pp. 24-29.

Bulatov O. G., Lyschak P. S., Odyn S. V. Moschnye klyuchi na tiristorah, vyklyuchaemyh po tcepi upravleniya [Powerful keys on the thyristors which switched off on a chain of management:]. Elektrotekhnicheskaya promyshlennost – Electrical industry. 1988, issue 19, 48 p.

IGBT (Insulated gate bipolar transistor) bipolyarnyy tranzistor s izolirovannym zatvorom [The bipolar transistor with the isolated lock]. Silovye IGBT-moduli: Materialy po primeneniyu – Power IGBT modules: Materials on application. Moscow. Dodeka Publ., 1987, pp. 38-45

Published

2016-11-23

Issue

Section

Power Supply