Identification of thermal conductivity between external air and the case of the equivalent heat scheme of substitution of the asynchronous traction engine of a traw wagon

О. М. Петренко, В. В. Божко, М. В. Хворост

Abstract


The article is devoted to the method of determining the thermal conductivity between the external air and the equivalent thermal circuit for the replacement of an asynchronous traction motor with IP 54 protection level, which is used on tram cars. The specific features of the technique is the determination of conductivity, taking into account the thermal resistances between the following surfaces: the outer surface of the drooping part of the frame on the drive side and the outside air; The outer surface of the bed above the bag and the outside air, the outer surface of the hanging part of the frame on the fan side and the outside air, the outer surface of the bearing shield on the drive side and the outside air, and between the outer surface of the bearing shield on the fan side and the outside air.

According to the proposed method, the thermal conductivities between the external air and the hull for the asynchronous traction engine of the tram car AD 931 were determined with parameters with different engine speeds. It was shown that the thermal conductivity between the external air and the body increases from 6.13 W / K at 10 rpm to 93.5 W / K at 4400 rpm, which significantly affects the thermal conditions of the engine.


Keywords


induction traction motor; equivalent thermal equivalent circuit; thermal resistance; thermal conductivity; heat transfer coefficient; Reynolds number

References


Liubarskyi, B. H. Ratsionalni shvydkisni rezhymy rukhu prymiskoho elektropoizdu z asynkhronnymy tiahovymy dvyhunamy / B.H. Liubarskyi // Visnyk Natsionalnoho tekhnichnoho universytetu "Kharkivskyi politekhnichnyi instytut". — 2015. — № 8(1127). — S. 86—92.

Mizuno, S. Development of a Totally Enclosed Fan-Cooled Traction Motor / Sueyoshi Mizuno, Shinichi Noda, Makoto Matsushita, Taihei Koyama, Shigetomo Shiraishi //IEEE Transactions on Industry Applications. — 2013. — Vol. 49, No.4, july/august. — P 1508—1513.

Nakahama, T. Coolingairflow in unidirectional ventilated open-type motors for electric vehicles / T. Nakahama, K. Suzuki, S. Hashidume, F. Ishibashi // IEEE Trans. Energy Convers. — 2006. — Vol. 21, No. 3, Sep. — P. 645—651.

Cuiping, L. I. Analysis of 3D static temperature field of water cooling induction motor in mini electric vehicle / L. I. Cuiping, P. E. I. Yulong, N. I. Ronggang, C. Shukang // Proc. ICEMS. — 2011. — P. 1—5.

Nakahama, T. Improved cooling performance of large motors using fans / T. Nakahama, D. Biswas, K. Kawano, F. Ishibashi // IEEE Trans. Energy Convers. — 2006. — Vol. 21, No. 2, Jun. — P. 324—331.

Boglietti, A. Evolution and Modern Approach for Thermal Analysis of Electrical Machines / A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, C.Mejuto // IEEE transactions on industrial electronics. — 2009. — Vol. 56, No. 3, March. P. 871—882.

Petrushin B.C. Universalnaya teplovaya shema zamescheniya asinhronnyih dvigateley / V.S. Petrushin, A.M. Yakimets // Elektromashinobuduvannya ta elektroobladnannya. – 2002. – № 59. – S. 75–79.

Petrushin, V. S. Osobennosti teplovyih raschetov neustanovivshihsya rezhimov rabotyi reguliruemyih asinhronnyih dvigateley / V. S. Petrushin, A. M. Yakimets, O. V. Kalenik // Elektromashinostroenie i elektrooborudovanie. — 2008. — № 71. — S. 47—51.

Petrenko, O. M. Matematychna model teplovoho stanu tiahovykh asynkhronnykh dvyhuniv tramvainykh vahoniv / O. M. Petrenko, B. H. Liubarskyi, M.L. Hliebova // Systemy upravlinnia, navihatsii ta zviazku. — 2017. — № 2(42). —S. 43—47.


GOST Style Citations


Любарський, Б. Г. Раціональні швидкісні режими руху приміського електропоїзду з асинхронними тяговими двигунами / Б.Г. Любарський // Вісник Національного технічного університету "Харківський політехнічний інститут". — 2015. — № 8(1127). — С. 86—92.

Mizuno, S. Development of a Totally Enclosed Fan-Cooled Traction Motor / Sueyoshi Mizuno, Shinichi Noda, Makoto Matsushita, Taihei Koyama, Shigetomo Shiraishi //IEEE Transactions on Industry Applications. — 2013. — Vol. 49, No.4, july/august. — P 1508—1513.

Nakahama, T. Coolingairflow in unidirectional ventilated open-type motors for electric vehicles / T. Nakahama, K. Suzuki, S. Hashidume, F. Ishibashi // IEEE Trans. Energy Convers. — 2006. — Vol. 21, No. 3, Sep. — P. 645—651.

Cuiping, L. I. Analysis of 3D static temperature field of water cooling induction motor in mini electric vehicle / L. I. Cuiping, P. E. I. Yulong, N. I. Ronggang, C. Shukang // Proc. ICEMS. — 2011. — P. 1—5.

Nakahama, T. Improved cooling performance of large motors using fans / T. Nakahama, D. Biswas, K. Kawano, F. Ishibashi // IEEE Trans. Energy Convers. — 2006. — Vol. 21, No. 2, Jun. — P. 324—331.

Boglietti, A. Evolution and Modern Approach for Thermal Analysis of Electrical Machines / A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, C.Mejuto // IEEE transactions on industrial electronics. — 2009. — Vol. 56, No. 3, March. P. 871—882.

Петрушин B.C. Универсальная тепловая схема замещения асинхронных двигателей  / В.С. Петрушин, А.М. Якимец // Електромашинобудування та електрообладнання. – 2002. – № 59. – С. 75–79.

Петрушин, В. С. Особенности тепловых расчетов неустановившихся режимов работы регулируемых асинхронных двигателей / В. С. Петрушин, А. М. Якимец, О. В. Каленик // Электромашиностроение и электрооборудование. — 2008. — № 71. — С. 47—51.

Петренко, О. М. Математична модель теплового стану тягових асинхронних двигунів трамвайних вагонів / О. М. Петренко, Б. Г. Любарський, М.Л. Глєбова // Системи управління, навігації та зв'язку. — 2017. — № 2(42). —С. 43—47.





DOI: https://doi.org/10.15802/etr.v0i13.117837

Refbacks

  • There are currently no refbacks.